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TH1s paper is an attempt to work out the theory of the motion of a rigid body under
the action of any forces, with the generalised conceptions of distance of the so-called
non-Euclidean geometry. Of the three kinds of non-Euclidean space, that known as
elliptic space has been chosen, because of the perfect duality and symmetry which
exist in this case. The special features of the method employed are the extensive use
of the symmetrical and homogeneous system of coordinates given by a quadrantal
tetrahedron, and the use of Professor CAYLEY’S coordinates, in preference to the
“rotors ” of Professor CLIFFORD, to represent the position of a line in space.

The first part, §§ 1-21, is introductory ; in it the theory of plane and solid geometry
is briefly worked out from the basis of Professor CAYLEY’s idea of an absolute quadric.
By taking a quadrantal triangle (i.e., a triangle self-conjugate with regard to the
absolute conic) as the triangle of reference, the equations to lines, circles, and conics
are found in a simple form, and some of their properties investigated.

The geometry of any plane is proved to be the same as that of a sphere of unit
radius, so that elliptic space is shown to have a uniform positive curvature.

The theory is then extended to solid geometry, and the most important relations of
planes and lines to each other are worked out.

The next part treats of the kinematics of a rigid body. The possibility of the
existence of a rigid body is shown to be implied by the constant curvature of elliptic
space, and then the theory of its displacement is made to depend entirely on ortho-
gonal transformation. Any displacement may be expressed as a twist about a certain
screw. A rotation about a line is shown to be the same as an equal translation along
its polar; so that the difference between a rotation and a translation disappears, and
the motion of any body is expressed in terms of six symmetrical angular velocities.
An angular velocity w, about a line whose coordinates are a, b, ¢, f, g, &, is found to
be capable of resolution into component angular velocities, dw, b . . . ho, about the
edges of the fundamental tetrahedron.

The theory of screws is next considered. A twist on a screw can be replaced by a
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pair of rotations about any two lines which are conjugate to each other in a certain
linear complex. The surface corresponding to the cylindroid is found to be of the
fourth order with a pair of nodal lines. Lastly, the condition of equivalence of any
number of twists about given screws is investigated.

In kinetics, the measure of force is deduced from NEwTON’S second law of motion,
and the laws of combination and resolution are proved. The consideration of the
whole momentum of a body suggests the idea of moments of inertia, and a few of
their properties are investigated. The general equations of motion referred to any
moving axes are then found, and in a particular case they reduce to a form corres-
ponding to EULER’s equations ; these are of the type

Ao, — (B—H)w,w,— (G—C)ayw;=Q,.

The last part is occupied in the solution of these equations when no forces act, in
terms of the theta-functions of two variables. A solution is obtained in the form

— M _ Sz, y)
1= "ol ?/), wék_j:é}m@: ?/)’
Yo, ¥) (2, )
w,=b. 2, =q.
? (s ¥) @s=Y9 Jo(2s y)
_ Y9(2, y) _ (@, ¥)
-w3—0.’9m(w’ ?/), we_h.'gm(‘”’ y)’

where x=nt+a and y is arbitrary. DBut in order that these values may satisfy the
equations, a relation among the parameters of the theta-functions must be satisfied.
This is

C4C10C5C9 1 C1615C9C14=0.

The solution is not complete, because after satisfying the equations of motion only
four constants remain to express the initial conditions, whereas six constants are
required.

Introduction.

A concise review of the characteristics of the different kinds of generalised space will
be found in the introduction to Professor CLIFFORD’S mathematical works by the late
Professor H. J. S. Smrte (Introduction, p. xxx1x.), together with an analysis of
CLIFFORD’S numerous memoirs relating to this subject. Further information may be
found in the following papers :—

Dr. Barr, “On the Non-Euclidean Geometry,” ¢ Hermathena,” vol. iii.

Professor CAYLEY, “A Sixth Memoir on Quantics,” Phil. Trans., 1859.

Professor LINDEMANN, “ Projectivische Behandlung der Mechanik starrer Korper,”
Math. Annalen, Bd. vii., 1874.



A RIGID BODY IN ELLIPTIC SPACE. 283

Mr. Homersaam Cox, “ Homogeneous Coordinates in Imaginary Geometry, and
their application to Systems of Forces,” Quarterly Journal, vol. 18.

For the coordinates of a line see the paper by Professor Cayrey, Camb. Phll
Trans., vol. xi.

On the geometry of elliptic space.

§ 1. Geometrical theorems are sometimes divided into two classes, descriptive and
metrical. Descriptive theorems have reference to the relative positions of figures, and
are unaltered by projection and linear transformation. Metrical theorems have refer-
ence to magnitudes, such as lengths of lines, the measures of angles, areas and volumes.
But it has been pointed out by Professor CAYLEY that metrical theorems may always
be stated as descriptive; they are descriptive relations between geometrical figures
and certain fixed geometrical forms, which he calls the Absolute. In ordinary
plane geometry the Absolute consists of an imaginary point-pair on a real line, viz.,
the circular points at infinity. The magnitude of the angle between two lines, for
instance, may be expressed as a function of the anharmonic ratio of the pencil formed
by the lines, and the pair of lines drawn from their intersection to the Absolute point-
pair. In three dimensions the Absolute is the imaginary circle at infinity.

2. Professor CAYLEY generalises this idea of metrical theorems by supposing the
Absolute to be the points and planes of a fixed quadric surface in space. The Absolute
in any plane consists of the points and lines of a fixed conic lying in the plane, the
conic being the intersection of the plane with the Absolute quadric.

There are three different kinds of geometry of space depending on the nature of this
Absolute quadric. These are |

(1.) Elliptic geometry, in which all the elements of the Absolute are imaginary.

(2.) Hyperbolic geometry, in which the Absolute surface is real, but contains no
real straight lines, and surrounds us.

(3.) Parabolic geometry, in which the Absolute degenerates into an imaginary conic
in a real plane.

In what follows we shall suppose all the elements of the Absolute imaginary.

8. On any line there is an Absolute point-pair, viz., the intersections of the line
with the Absolute quadric. The position of any point on the line will be determined
when we know the ratio of its distances from the Absolute points. If we denote this
ratio by z, the distance between two points must be a function of the ratios z, and z,,
corresponding to the points.

Now, the fundamental property of the distance between two points may be expressed

by the relation S
PQ4+QR=PR

where P, Q, R are three points on the same line. In view of this relation the distance
between two points z,, 7, is defined to be
2 0 2
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!
c log :

where ¢ is an arbitrary constant. Hence, in this generalised system of Geometry, the
distance between two points on a line is measured by the logarithm of the anharmonic
ratio of the range formed by the two points and the absolute point-pair of the line,
multiplied by an arbitrary constant.

4. The relations between lines passing through a point and lying in a plane are
exactly the same as the relations between points along a line. Among the lines lying
in a plane and passing through a point there are two fixed lines called the Absolute
pair of lines ; these are the pair of tangents that can be drawn from the point to the
Absolute conic of the plane. The measurement of angles will thus be exactly similar
to the measurement of distances. The angle between two lines lying in a plane is
measured by the logarithm of the anharmonic ratio of the pencil formed by the lines
and the Absolute pair of lines passing through the point, multiplied by an arbitrary
constant. There is a special advantage in choosing both these arbitrary constants

’L —
to be 5’ where ¢ denotes v/ —1.

From these definitions it follows by properties of poles and polars that the distance
between two points is equal to the angle between their polars, so that any theorem of
distances has a reciprocal theorem relating to angles.

5. Let U=0 be the equation to the Absolute conic in any plane in the notation of
Ordinary Geometry. If (a, 9, 2,), (2, Yo, 2,) be any two points, the coordinates of
any point on the line joining them are proportional to w,—M\w,, y;—\y, 2—M\z.
Hence to find the Absolute point-pair we have the equation

TJ11_2XU12+ )\2U22: 0 . . . . . . . . . (].)
with the usual notation. '
Let 8 be the generalised distance between the points 1, 2. Then

PN
8._2 log x

where \;, \; are the roots of the quadratic equation (1). IHence

il 6_28,.:7:1%&22
therefore
{6&' + e—s‘} 2__ M EN)?
2 AN,
that 1s,

U12
B e 2

cos? =
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6. As the triangle of reference take any self-conjugate triangle with respect to the
Absolute conic, so that the equation to the conic becomes

pr+qyt+r2*=0.
Then U,,=pa,2,~4qy, v+ 72125, and

{ P22y + gy + 12021
(p® + g + 1) (prg® + qu* +1%7)

cos? =

This suggests a new system of coordinates. Let (x, v, 2) denote the cosines of the
generalised distances from the angular points of the triangle of reference, of a point
whose coordinates were (,, ¥, 2;) in Ordinary Geometry.

Then

2.2

Hence

P tr=1,

and the equation to the Absolute conic is
2?4y +22=0.
Then if 8 denote the distance between two points (z, ¥, 2), (&, ¥/, ?),
cos S=xu/+yy' +27.

7. If (I, m, n) be the coordinates of any point, the equation to its polar line with
respect to the Absolute conic is
le+my+4nz=0.

Here (I, m, n) may be looked upon as the coordinates of the pole, or the tangential
coordinates of the line, indifferently ; and we shall always suppose that

P4+m?4-nt=1.

The form of the equation shows that a point is distant one right angle from any
point of its polar. From this theorem, we deduce by Reciprocation, that a given line
is perpendicular to any line through its pole. Hence the sides and angles of any self-
conjugate triangle with respect to the Absolute conic are all right angles. Such a
triangle is called a Quadrantal triangle. We can now give a new interpretation of
the coordinates (%, ¥, 2); they are the sines of the perpendiculars from the point let
fall on the three sides of the triangle of reference.
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8. The angle between two lines is equal to the distance between their poles; z.e., if
0 be the angle between two lines whose poles are ([, m, n), (I', m’, n’),

cos O=1U'+mm/+nn'.

To draw a perpendicular from a point to a line, we have only to join the point to
the pole of the line. In general we can draw only one perpendicular from the point
to the line, but if the point be the pole of the line, every line through it is a
perpendicular to the given line. Let = be the sine of the perpendicular from a point

(@, ¥, z) to a line
lx+my-+nz=0.

Then = denotes the cosine of the distance of the point from the pole of the line,

therefore
w=lx+my-+nz.

The equation to the line joining two points (', ¥/, #), (¢, ¥”, 2”) is

The equation to a line drawn from a point («/, ¥, #/) perpendicular to a line
e+ my+nz=0 is

y z |=0
oy 7
I m n

9. We now proceed to establish the Trigonometry of any plane. Let A B C be a
triangle, and, for simplicity, let C be an angle of the triangle of reference, and let A, B
be the points 1, 2. Denoting the sides of this triangle by a, b, ¢, we get

€08 C=x;%y+1Ys+21%
cos A=z,

cos b=z,

Again, the equation to the absolute pair of lines through C is
x*+1y*=0.

It is easy to see that the formula
Uy’

Ull U22

cos? 8=
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is applicable to this case also, therefore

o (@mayt iy
(008 U= @2+ 9" +7)
and therefore
X% 1,9, =sin a sin b cos C
Hence finally
cos c=cos & cos b-sin a sin b cos C.

From this equation may be deduced, as in Spherical Trigonometry, the relations

sinA sinB sinC

sine  sind  sine

Hencs the geometry of any plane in elliptic space is the same as the geometry of a
sphere in ordinary space. A straight line in the plane corresponds to a great circle
on the sphere. But further, the distance between any two points measured in the way
we have indicated is periodic, the length of a complete period being 27. Hence we
infer that the radius of any great circle of the sphere is unity. Thus any line and
any plane may be supposed to have a uniform positive curvature unity.

RI1EMANN, in his memoir “ On the Hypotheses which lie at the Bases of Geometry,”
speaks of the curvature of an n-fold extent at a given point and in a given surface
direction ; he explains it as follows :—

Suppose that from any given point the system of shortest lines going out from it
be constructed. Any one of these geodesics is entirely determined when its initial
direction is given. Accordingly we obtain a determinate surface if we prolong all the
geodesics proceeding from the given point and lying initially in the given surface
direction ; this surface has at the given point a definite curvature, measured in the
manner indicated by Gauss. This curvature is the curvature of the n-fold continuum
at the given point in the given surface direction. :

If we construct a surface at a given point of elliptic space in any direction in the
way thus indicated, the geometry of such a surface is the same as that of a sphere
of unit radius in ordinary space. Thus for all points and for all surface directions
the curvature will be unity. Hence elliptic space is said to have a uniform positive
curvature.

10. The general equation of a conic, in the notation of ordinary space, is a homo-
geneous equation of the second degree. Hence, when we pass to the new coordinates,
the equation to a conic will still be homogeneous and of the second degree. If we
choose our triangle of reference to be the self-conjugate triangle common to the conic
and the Absolute, the form of the equation becomes

A4+ By*+C2=0.
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The sides of this triangle of reference may be called the principal axes of the conic.
The condition that an equation of the second degree should represent two straight
lines, is that the discriminant should vanish. If we consider the equation

S=ha o+,

and make the discriminant vanish, we get three pairs of lines, which are the repre-
sentatives of the asymptotes in ordinary geometry. If we take the form of the
equation referred to the principal axes, we see that a pair of these lines passes through
each angular point of the triangle. The asymptotes, however, no longer fouch the
conic, but are the six lines joining the four points of intersection of the conic with
the absolute.

11. If the equation to a conic be

2 R 2
P,
a* 0P ¢
the tangential equation becomes

AP+ *mP4c*Pnt=0.
The tangential equation of the absolute is
P4+m?4n2=0.

The foci of a conic may be defined to be the six points of intersection of the
common tangents to the conic and the Absolute. Confocal conics are those which
have the same common tangents with the Absolute. Hence the tangential equation
of a system of confocal conics is

P 4-"mP+ AP M B+ mP 41 =0
and therefore, in point coordinates, the equation to a system of confocal conics is

22 oy 2

dr T ton~

0.

Thus confocal conics have the same principal axes. Also it may be shown in the
usual way that confocal conics cut at right angles, and that two confocals can be drawn
through any point in the plane.

12. The equation to a circle whose centre is (/, m, n), and the cosine of whose
radius is 7, is

le+my—+az=r;
or, making it homogeneous,

(le-my +nz)=r*(x"+y*+2).
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The form of this equation shows that a circle is a conic having double contact with
the Absolute in the two points in which it is met by the polar line of the centre of
the circle. ‘

Many other interesting properties of conics may be worked out by means of these
equations, but as they will not concern us we pass on at once to the geometry of three
dimensions. »

Solid geometry.

18. As before, we refer the Absolute quadric to a self-conjugate tetrahedron. Let
the equation to it, in any system of plane coordinates of ordinary space, be

pa2+q,82+7"y2+382= 0.
Then, if 6 be the distance between the points 1, 2,

[payog+ 98,8y + 7917 + 88,8,

cos *= 2 9 P 9 2 2 2 o1
[_po‘l +gBl +7‘71 +881 ][]0“2 +QBQ +7"}’2 +382”]

This again suggests a new system of homogeneous coordinates. Let (x, ¥, 2z, w)
denote the cosines of the distances of the point («, 8, y, 8) from the four angular
points of the tetrahedron of reference. Then

9__ pa?
T pat g+ ot + 587

&c.

For any real point

a1y 2 ut=1.
The equation of the Absolute quadric in these coordinates is
x4 u=0.
Also if 0 be the distance between two points (x, ¥, 2 u) (&, v, 7, v), we have
cos O=uxa’ +yy 27 +uw'.

14. If (I, m, n, p) be the coordinates of a poiut the equation of the polar plane with
reference to the Absolute quadric is

le+my—+nz+pu=0.
In the equation to any plane we shall suppose the coefficients such that

Zz_l_mz_l_nz_l_pz:.__ 1
MDCCCLXXXIV. 2 r
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and then (/, m, n, p) will be regarded indifferently as the coordinates of the pole, or
the coordinates of the plane. The distance of a point from any point of its polar plane
is a right angle; and from what was proved for two dimensions it follows that any line
passing through the pole of a plane is perpendicular to the plane. The lengths of the
six edges and the angles of all the faces of the fundamental tetrahedron are all right
angles. Such a tetrahedron is called a quadrantal tetrahedron. The coordinates
(, y, 2, u) are the sines of the perpendicular distances of a point from the four planes
of reference. If we put u=0 in any formula the system reduces to the same coordi-
nates as were used in two dimensions. Let = denote the sine of the perpendicular
from any point (x, ¥, 2, u) to the plane

la+my-+nz+pu=0,

then = is the cosine of the distance between (x, ¥, %, u) and the pole of the plane,
and therefore
w=lx+my-+nz—+pu.

The angle between two planes is equal to the distance between their poles, so that
if 0 be the angle between the two planes (I, m, n, p), (I, m/, %/, p'),

cos 0=1U'+mm'+nn'+pp’.
15. A straight line may be conveniently specified by six coordinates, as shown

by Professor CavrEy. Let (z, v, 2, u), (', ¥/, 2, v’) be two points on any line, and
(¢, m, n, p), (', m', ', p’) two planes through it, so that

le +my +nz +pu =01
Ve +m'y +0'z +p'u =OJ

le’ +my’ +n2’ +pu’ =0
Ui +m/y/ +n/zl +p/u/= 0
Eliminating ! between the first and third equations we get
0+m(wy —x"y) —n(zx’ —2'x) +p(wew —a'u)=0
Similarly,
04/ (wy —ay) —n/(zad — ') +p' (v’ —2'u) =0,

and we can obtain other equations of similar forms in the same way. Let a,b,¢, f, g, h
denote respectively the quantities
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Y2 —y'z, 2! —2'x, xy’ —a'y, ou’ —au, yu' —y'u, 20’ —2u,
then
—cm+bn—fp=0)
c . —an—gp=0
—bl4+an . —hp=0
Sl+gm4-n . =0

There is a similar set of equations obtained by writing 7, m/, #/, p’ for [, m, n, p in
these equations.
Taking the equations

—cm +bn —fp =0
—em/+bn’ —fp'=0

and eliminating f, we have
o(mp’—m’p)=b(np’—n'p)

Proceeding in this way, and eliminating the other letters in turn, it is easily seen
that

o : b : ¢ : f . g . 7
=lp'=lUp : mp'—m’p : np’—n'p : mn'—m'n : Wl'—n'l : V'm—Im.

Choose the planes (I, m, n, p), (I, m’, n/, p) to be at rightiangles, and the points
(, y, 2, u), (', ¥/, 2/, w') to be distant a right angle; then

(Ip’ =)+ (mp’ —m/p)2+ (np’ —n'p)2 4 (mn’ — m/n)2 4 (nl — ' TP+ (I’ —U'm)®
=P min+ p?) (P4 w202 p®) — (W +mm '+ pp')?

=1,
and similarly it may be shown that
(4 =y 2+ (e’ =2 @)+ (g — 2'y)*+ (ap’ —/'p) 4+ (yp' —y PP+ (ep'—#p)*=1.
Hence
a=y —yz=Ilp'—p,
and so on for all the letters, and

0&2+b2+02+f2+gg-|--h2=1.

From the forms of a, b, ¢, f, g, b, it is easy to show that there is an identical
relation between them
af-+bg+ch=0.
2 P 2
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The quantities a, b, ¢, f; 9, h, are thus reduced to four independent variables and are
called the six coordinates of the line.

16. If we interchange the letters (x, v, 2, u) with the letters (I, m, n, p), we get the
polar line of the first. Hence the coordinates of the polar line are

59,0, 0,0, c

The co-ordinates of the line joining two points (x, ¥, 2, u), («', ¥/, #, v) distant an
angle 0 from each other, are
yz' —y'z
~ sing

Similarly for the line of intersection of two given planes.
It has been incidentally proved that the conditions that a line a, b, ¢, £; g, h should
lie in a plane I, m, n, p, are

— caﬁn-}-bn—-']‘jozowl

cl . —an—gp=0
—bl+am . —hp=0

fl +gmthn . =0J'

which. are equivalent to two independent relations. These are also the conditions that
the polar line f; g, h, a, b, ¢ should pass through the point (7, m, n, p).
The coordinates of a line through a point (z, v, 2, u) perpendicular to a plane
(¢, m, n, p) are
__yn—=zm

sin 8

where @ is the angle between (x, 4, 2, #) and the point (I, m, n, p), which is the pole of
the plane.

17. We shall now find the length of the perpendicular from any point (x, y, 2, ) to
aline a, b, ¢, f; g, h. '

Let (I, m, n, p), (I/, m’, @/, p’) be two perpendicular planes passing through the line.
Let @y, @, be the sines of the perpendiculars from (x, y, z, u) on these planes, and
let = be the sine of the perpendicular on the given line. Then by Spherical
Trigonometry

=+,
Now
w =lr +my +nz +pu
wy=0l'x+m'y+n'24p'u
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therefore
ml —wy] = . —hy—l—gz—om\]
wm —wym= hx . —fz—bu
wn —mn =—gr+fz . —ou
= p —wp = ax+by4cz J

1f we square and add these equations, the left side becomes = *+=,?; hence

m.2=a2(x2+u2)+ b2(y2+ uz)_l_cz(zz_l_uz) +j‘2(y2+ 22) +92(Z2+ w2)+h2(x2+y2)
+2y2(bec —gh) 42z (ca —hf ) + 22y (ab—fg)
+ 2xu(cg —bh) + 2yu(ah—cf ) +22u(bf —ag).

18. Any line which meets a given line and its polar, cuts both perpendicularly, and
the length of the part intercepted between them is a right angle. If we have two
given lines in space, which do not meet, we can, in general, draw two lines cutting
both perpendicularly ; these are the two lines which can be drawn meeting the two
given lines and their polars. These two common perpendiculars are conjugate to each
other with reference to the absolute.

Let (a, b, ¢, f, 9, b), (&, U, ¢, ', ¢', ') be two given non-intersecting lines, and let &
be the length of one of their common perpendiculars. Draw a plane (/, m, n, p) through
3 and the first line, and another plane (I, m’, #/, p) through & and the second line, and
let 0 be the angle between these planes. Draw also a plane (\, u, », =) through the
first line and perpendicular to the plane (I, m, n, p), and (N, u/, v/, &) through the
second line and perpendicular to the plane (I', m’, n’, p). Then we have the following
relations :—

IN +mp +nv 4+ pw =0
IN 4+mp” +m +ps’ =0
IN4m'p 42"y +p'm =0

UN 4w/ 47V +p'='=0 JI

W +4mm'+nn'4pp” = cos 0
MWA4up 4w’ +ow’ = cos 8}
Now
o =my —pun, &e.
a'=m —pu'n’, &ec.
Hence it follows that
ad +bb" +cd +ff" 499"+ bl
= (W 4+mm/ 420+ pp" ) O\ + pp’ +1v' 4+ =)
— (IN +mp’ '+ pw’ YU p417'v4- p'w),
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and therefore

cos'f cos S=aa'4bb' +cc’+ff + 99 +hh'.
19. Again, if we expand the determinant

I m n p
T -
U m 2 p
N Y B
it becomes
O by el o g+

Now, squaring the determinant, we get

A= 1 . cos 0
1 . cos &
cos 0 . 1 .
cos 3 . 1
=1— cos?® 0— cos? §-4 cos?® 0 cos® d
= sin? @ sin® 3.
Hence

sin 0 sin §=af'+bg +cl’' +fo’+9gb'+he'.

These formulse remain unchanged if we pass to the other common perpendicular, or
if we take the two polar lines instead of the given lines.
If the lines meet one another

af ' +bg b’ +fo' +gb +he' =0,
and then the angle between them is given by the equation
cos 0=aa’+0b' +cc’' +ff 499 4+l

20. The equation to a sphere, whose centre is (I, m, 7, p) and the cosine of whose
radius is 7, 18

le+my+nz+pu=mr.
This may be written in the homogeneous form
{le4my~+nz+pul=r2(a®+y*+2"+u7).

Hence we infer that a sphere is a quadric touching the absolute quadric along its
intersection with the polar plane of the centre of the sphere. The polar plane itself is
a particular case of a sphere, the radius being equal to a right angle.
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21. The general equation of a quadric is a homogeneous equation of the second
degree in x, ¥, z, u. By an orthogonal transformation we know that we can rid the
equation of the products of (x, ¥, z, u), and at the same time keep a4 y*+2°+u?
unchanged. The equation will then reduce to the form

Ax?+By*+ C2+ Duw?=0.

The tetrahedron of reference is the common self-conjugate tetrahedron to the given
quadric and the absolute. The six edges may be called the principal axes of the
quadric.

The equation to a system of confocal quadrics may, as before, be shown to be of the
form

o e 2 u?
stematenTan—

0.

Hence confocal quadrics cut at right angles.

The kinematics of a rigid body.

22. By a rigid body we mean a collection of particles so bound together that the
distance between any pair of them remains the same, however the system be moved
in space. In general, if we assume an arbitrary system of measure-relations as the
basis of our definition of distance, a rigid body could not exist. But it is pointed out
by RIEMANN in his paper “ On the Hypotheses which lie at the Bases of Geometry,”
that the special character of those centinua, whose curvature is constant, is that
figures may be moved in them from one position to another without stretching. This
may be illustrated for two dimensions, by saying that any figure traced on a spherical
surface may be moved from one position to another on the surface without deforma-
tion. But on the other hand, a figure traced on the surface of an ellipsoid, or other
surface for which the curvature is not uniform, can exist in one position only. Now
in elliptic space there is a uniform positive curvature; hence we assume that a figure
which exists in one position can exist in any other position of space without changing
the distance between any two of its points. The same result is arrived at by KrrIn,
by showing the possibility of finding a linear transformation, which transforms the
absolute quadric into itself.

23. A point is always distant a right angle from any point of its polar plane.
Hence a point and its polar plane always move together like a rigid body.

A displacement which leaves all the points of a given line unchanged in position, is
called a rotation about that line. If we take any two fixed points on the line, the
distance of any point of the body from each of these remains unchanged. Hence it
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follows, by Spherical Trigonometry, that the point describes a circle, whose centre is
the foot of the perpendicular let fall from the point to the axis of rotation. In the
case in which the point lies on the polar line of the axis of rotation, the radius of the
circle is a right angle, or in other words the circle becomes a straight line, viz., the
polar line itself; so that any point on the polar line of the axis of rotation remains
on that polar line.

A displacement which leaves all the planes through a given line unchanged in
position is called a translation along that line. In such a displacement the poles of
these fixed planes will be fixed points; in other words, all the points of the polar line
are fixed. Hence a translation along any line is also a rotation about the polar line.
If we measure a translation by the distance through which any point of the line of
translation is moved, and a rotation by the angle through which any plane through
the axis of rotation is turned, we see that a translation along any line is exactly the
same thing as an equal rotation about the polar line.

In elliptic space a translation has a definite line associated with it, Just in the same
way that a rotation has a definite axis. A translation through four right angles
brings a body back to its original position.

24. In working out the kinematics of a rigid body, we shall suppose a quadrantal
tetrahedron fixed in the body, so that the whole theory will depend on orthogonal
transformation. Let (I, m, n, p); o 5 4 be the coordinates of the four angular points of
the quadrantal tetrahedron moving with the body, referred to a fixed quadrantal tetra-
liedron in space. Let (x, 9, 2, u) be the coordinates of a point referred to the fixed
tetrahedron, (x, %o, %, %) the coordinates of the same point referred to the other
tetrahedron.

Then

xy=1lx+nmy+nz+pu )I
Yo=ly+myy—+ngz—+pyu l
2o="lgx+mgy -+ ngz—+pgu T
wo=lx+my+nz+pu JI

If we square these equations and add them and make

)’ +yo* 2t u=1

for all values of (x, ¥, 2, u), we find relations among the coeflicients, of the types

L i+ 41 =1
Lymy+lgmg+lmg+-1m, =0
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Again multiplying the expressions for , v, 2, u, by {1, Iy, ls, I,, Tespectively, and
adding, we get, by virtue of these relations,

w=1ay+ Loyt lszo 4Ly,

and there are similar expressions for v, z, u.

If we square and add the new set of equations, and make #?~+3>+224u?=1 for all
values of @y, ¥y, 2 Uy We find. another set of relations among the coefficients, of the
types . _

12 4m?® +n? +p? =1

L ly4mymy 4 n1n2+pr2 =0.

We may include all these equations in a scheme similar to that used for orthogonal
transformation in ordinary geometry

x Yy z u
x| L omy ony P
Yo | by my my Py
% | by mg my py
Uy | by my g Py

In this scheme, the sum of the squares of any row or column of the determinant is
unity ; and the sums of the products of the corresponding terms in any two rows, or
in any two columns, is zero.

The square of the determinant by means of these relations reduces to unity, so that
A*=1.

If the positive directions of the edges of the tetrahedron retain the same relative
positions towards each other, so that the tetrahedron could be moved into its new
position, we must.take A=+41. This may be easily verified for simple cases. This
is the only case that concerns us in the motion of a rigid body.

Comparing the equations

Azy=1,Ly +1,Ly+2,Lg +poluy
e=lxy +lyy +lyo +lpo

where L, L,, Lg, L, are the minors of 7, I, I, /,, we see that each constituent in the
determinant A is equal to its minor.

25. Let the coordinates of the edges 23, 31, 12, 14, 24, 34 be (a, b, ¢, £, 9, 1)1,0,5 4,5,
From the transformation of @, v, 2y, %, it is easily seen that

(Y o—Y0 %) = (Y7 —2zy’) (myng—mgn,) + . - . to six terms,
MDCCCLXXXIV. 2 Q



298 MR. R. 8. HEATH ON THE DYNAMICS OF

that 1s _ _
ay=aa,~+0b,+cc,+fH+99,+hh,.

This and similar equations give us the formule for transforming the coordinates of
aline. The transformation is orthogonal, and proceeding as before, we may use another
transformation scheme, viz.

a b ¢ f g h
a e by e i 1 My
bo | ag by o Sy 9y Iy
¢ | ag by o5 fs g5 Iy
Jo law by ocw Su 9 Iy
9o | @ b5 e S5 95 My
hy | ag bg cs fo 96 h

This determinant possesses properties similar to those proved for the other deter-
minant ; the sum of the squares of the terms in any row, or any column, is unity, and
the sum of the products of corresponding terms in any two rows, or in any two columns,
is zero.

26. From this scheme it follows that the coordinates of the edges of the fixed
tetrahedron referred to the other will be (a,, a,, ag, ay, d5, a), &c.  There are other
relations between the constituents of the determinant, due to the fact that opposite
edges are conjugate polars with reference to the absolute quadric. Thus

=, b=y, o =h, &
, &e.
SH=a, 91=0, hy=c,

If we square the determinant we get

D2=1.

As before we take D=1; in fact, D is the determinant formed out of the second

minors of A. Whence
D=nA3%*

Hence if we choose A=1 we must have D=1 also.

Tach constituent of the determinant D is equal to its minor. Also each minor of D
is equal to its complementary minor.

27. In any displacement of a rigid body there are always two lines which remain in
the same position after displacement.

# Of. Scorr’s ¢ Determinants,” chap. v., § 9.
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For let a, b, ¢, f, 9, b be the coordinates of a line which remains unchanged. If
such a line exist, we must have

0=a(a,—1)+0bb, +ee +ih +99 ~+hh,
0=aa, +b(by—1)+co, +172 +99: + hhy A
0=aa, +bb; - +o(es—1) ST +99s +hhg
0=aa, + 00, +ccy +A(fi—1)+994 +hhy
0=aa +bb; ~+cc; +1s +9(g5—1) +hhy
0=aaqy +0bg +ccg +/7s +99  +hih _1)

These equations are not independent; they are equivalent to four independent
equations only.

We proceed to eliminate g and & between the equations 2, 8, and 4. The deter-
minants thus introduced can be simplified by virtue of the relations between
(I, m, n, p)1,954 Thus

(g 2h3) = (m3p1 — 1M Py) (”1 Pa—"Tg 1) — (11 Pa—mmy 1) (15 P — ) Ps)
=p1{mg(ny py—"mn5py)+my(ns py—ny )+ my(ngps—nyp))}

= —pily
Similarly
(95h)=p,ls (9410)= —pila
Again
a(gahs) +ag(gahs) + t5(94h0)
= —py {l(myny—mny) +ls(myng—mgn,) +Ly(myng —mgn,) }
= p{m.ln —nl.llml} =0.
Similarly
ba(93hs) + (by—1)(g5h4) +Ds(9402) = —py(m+1;)
ca(gahs) +ca(gsh) +(es—1)(94h0)= ply +my)
(fa—1)(92hs) +fo(95h) + fs(94h0) = pils +p1)-

Hence (finally)
—p1b(+ls) Fprc(le+my) +pof (latp)=0

By a similar process we arrive at the following equations

(s 1) —e(ly +m)—f () +p)=0 )
—a(my+ny) : to(ly +my)—g(my+py)=0 L
a(mg+mng) —b(n, +15) . —h(n, 4+ps)=0 |
Sy +101)-|—g(m4+p2)+h(n4-|—p3) =0 JI

2 Q 2
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Again, since a,=f,, by=g,, c,=h,, &c., the last three of the original equations are
the same as the first three, with f; g, b written respectively for a, b, c. Hence these
three give rise to the group of equations

. +9(m + l)—=h(ly+my) —a(l, +p;)=0
—f(mg~+ny) . +h(ly~+my) —b(my+py) =0
S(ms+ng) —g(ny + 1s) . —o(ny +p;)=0
a(ly, +p1)+b(my+pg) +c(ny+ps) : =0

It is not difficult to show that the first three equations of the first group, with the
last of this group, contain all the rest.
Besides these we have the equation

af+bg-4-ch=0.

If we substitute for £, g, &, their values in terms of «, b, ¢, it becomes

(lip1)be{ (my—+ps)(lp~+my ) — (my+po) (my + l5)} + two similar terms=0.
This with the equation ‘

a(ly+p))+b(my—+py) +o(n,+ps) =0

will give us a quadratic in the ratios of « : b.

Hence there are two lines which remain fixed during any displacement. Since the
equations to find £, g, & are exactly the same as those to find a, b, ¢ it follows that one
of the lines will be the polar of the other.

The above work implies that the determinant

|

vanishes. I bave verified by actual calculation and reduction in terms of (Z, m, n,p),; 554
that the determinant and all its first minors vanish; but the work is too long to be
reproduced here.

Expressing the fact that two lines remain fixed during any displacement in kine-
matical language we learn that any displacement whatever of a rigid body may be
produced by two rotations, about two lines which are conjugate to each other with
reference to the absolute. Instead of rotations we might have said translations; or,
expressing one of the rotations as a translation along the polar line of its axis, we
learn that any displacement of a rigid body may be effected by a rotation about a line
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and a simultaneous translation along it. Instead of the line we might equally well
have used its polar.

28. Suppose the position of any rigid body determined by the coordinates of the
angular points of a quadrantal tetrahedron fixed in the body. Then, for a displacement
of the body, we have the equations

Y=my2y~+maYo+mszy+my,
2=n,7, +n5Y, +ng2y + 14,

1.»=]51w0 +252?/0 +jo3z0 +j)4u0

a=lay 41y, gy +lw, Wl
|
¢
I

The sixteen quantities /,, [, &c., have relations among them, and it is possible to
express them all in terms of six properly chosen variables. These new variables
0}, 0y, Ws, 0, 05 o are thus defined :—

‘01=l12.01 + lzibz + lsi"3 + 25745
Wo= mﬂbl +my T')z‘l' m372)3+ MyPy
“’3=”12.01 +”2].92 + n312)3 +n41(')4
wg=myn, +-mgny + mgng +myn,
w5=fn121 + n222 +77,3Z3 +n424

wg=lymy 1y +lymy +1m,
Since
L+ pyt+lsps+1,p=0 &e.

we immediately deduce six other equations by differentiation. These are

—o=lp + 22102 —|-Z3p3 + 24.1% )
- w2=f;n1p1+ mzpz'l' ";33103 + 7'7‘42%
- w3=7:21p1 + 7:12292 + 7}3?3 + 7%%204
— 0, = MMy My Mgy +mm,
—o;=ml gy gl +nd,
—wg= Zlml + izmg + i3m3 -+ l;mé )

And besides these, we have the four equations

o=0l, b, +Li 11,
0=mm, +mymg-+mgms—+m,m,
0=mn,m, + ngny +n3h3 —|—n47'z4

0"_—'2912.91 +P2i’2 +P31.93 +Z742.94~
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From these it follows at once that
—®) °P1;w6m1+w5n1+0 =l

In this way we arrive at the following equations :—

21 = . —wﬁm!—|—w5n1—wip1)
'n.zl= wgly . fw4n1—w2p1 I}
n =—wh+om . —egp |
1"1 = o togmtop, . J
and similar equations hold for the other vsufﬁxes. -
29. Substitute these values in the equations for «, v, 2, 4, and make the variable
tetrahedron instantaneously coincide with the fixed tetrahedron ; then

r= . — gl + wz—w U ]
Y= o . —og—ou |
é:—w5m+w4y . —co3u|r
u= oxtoytog J

To interpret the o’s suppose all except one (say w,) to vanish. - Then ¥, z vanish
therefore the distances of the moving point from the angular points 2 and 8 are con-
stant. Hence the displacement is a rotation about the axis 23.  If we put u=1, we
get 2=—aw,. Hence w, is the angular velocity about the axis 23. This angular
velocity is from the angular point 1, towards the angular point 4.

Assuming the principle of superposition of small motions, we may say that the
equations give us the rates of change of the variables x, , 2, u, due to a motion, which
is the resultant of angular velocities w,, w,, wg, @, w;, wg, about the six edges of the fixed
tetrahedron, 23, 31, 12, 14, 24, 34 respectively.

30. In exactly the same way we may express the variations of I, m, n, p, in terms
of six other variables, 0, 0,, 0;, 0,, 0;, 0;, defined as follows :—

0, =le4d+7h1m4fl—'ﬁ1%4+]51204 A
0,= Zglé-l- 75%277%4 +ﬁ2n4+152p4
Oy=1I,0,+ ’1’5%3'77%-}' hg% +]5329e L
0=yl 1t nong+ pops
0, =10, +mgm, 4-ngn, +pyp,
0, =10, m;m,+ 7%/1712""]51]92 p
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These equations give us
L= . +64,—0,l+6],
i2= =0l . 40,05+ 0y,
z:3= O,—00y - +0d, |
Lh=—0,—0,l,—00; . J

and similar equations in m, n, and p.

Tt will be seen that — 6, —6,, —0,, —0,, —0,, —b,, are formed from the coordinates
(2 Uy, U5, 1), &e., in exactly the same way as o), w,, ws, 0, o;, o5 were formed from
(!, m, n, p), &c. Hence, if we rTegard the variable tetrahedron as fixed, the other
tetrahedron will have angular velocities —0,, —0,, —0,, —0,, —0;, — 6, relative to it.
Hence, reversing the motion, we see that 0, 6,, 0, 6,, 0, 6, are the angular velocities
of the moving tetrahedron about fixed axes instantaneously coinciding with its own.

31. By deﬁmtlon, :

‘0l=l1l4+77.7,1m4+1'21'n4+j)1p4. :
Substitute the values of I}, m,, n;, p, in-terms of the w’s; then

b=, (,ps— l4191);|' w2(m1p4¢_7;ﬁ4:p1) +w3(n pa—nup1)
o F o (myn,—myn,)+ o5(nyly—n4l,) +og(lymy— lymy)
=, fy+ 09,4+ w3h4+ 0,0, wsbﬁ‘ WeCy
e, .

1—“’1“1+ Wy 1+‘”3°1+“’4fl+‘°591+ wghy

Similarly for the . 0the1 0's. Hence the Hs can be expressed in terms of the w’s by
the same transformation scheme that was used for expressing a,, by, €0,/ 9o, ho, in terms
of a,b, ¢, f, 9, h. .

32. This result glveq us the laW by which angular velocities and translations are
resolved. - For suppose all the #s zero except 6,, then

‘°1=0_‘101 . w/b=.f1 0,
w,=b;0, w;=¢,6,
wg=¢, 0, | Wg ;':.hl 6,

In other words, any angular velocity 6, about a fixed line (a, b, ¢, f; g, %) is equivalent
‘to component angular velocities ad, bd, cf), /0, 90, h8 about the six edges of the funda-
mental tetrahedron respectively.

A translation along a line may be resolved into translations along the six edges
according to the same law.
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Hence, the component angular velocity about a line (a,, by, ¢, f1, 91, b1) of an angular
velocity 0 about (a, b, ¢, f, ¢, h) is

O(aa, +0b,+ce,+ 111 +99:+hhy)

If the lines meet, this law is similar to the parallelogrammic law in ordinary space.
To find the component angular velocity about any line, we multiply the given angular
velocity by the cosine of the inclination of the line to the axis of rotation.

Also the component translational velocity along the line (a,, by, ¢, fi, 91, ;) due to
the same angular velocity 0, is

0(afy+b9,+ chy+fo,+gb, +-hey)

Hence the expression af;+bg,4ch,+fa,4gb,+he, denotes the velocity along one
line due to a unit angular velocity about the other. It is sometimes called the moment
of the two lines. ,

33. We shall next find the rates of change of the coordinates of a line, due to the
angular velocities w;, 0y, w;, w,, w5, o

Take two points (z, v, 2, u), (¥, ¥/, 2, '), distant a right angle from each other.

We already know expressions for x, ¥, z‘, % in terms of the o’s. Now
.od, o,
‘L”dt(yz —y%)

=y —zy'+yZ —nf
= (tws; —20, —uwy)? —(—rw; +yo,—uw,)y’
(=& g4y 0, — ' 0g)y — (¥ 0g—7 0,— v,z
= wy(w2 —2'2) — wy(u2' —u'2) 4 w52y’ +a'y) — oy (yu’' —y'u)
and therefore
0= — 0+ w0 — wyg~+ wh
Hence finally

a= .‘—wﬁb—l—w5c . —wggtwh)
b— w0 . —octof . —wh
t::z—w{,a—l—wéb - —ayftaoyg ‘>
f= . —wdtoc . —ogtoh
9= o . —octof . toh
h=—wgatwb . —ow; ftog . §

Since —#0,, —0,, &c., correspond to ), w,, &c., if’ we apply these formule to the
edges of the fixed tetrahedron we find
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0.61 = . +Oay—00, . F00;—0u0
0.”2'—_ —by . FOas—ba, . +0i0
a= O.0,—00, . +0,0,—0,05
a= . +0a,—0a, . e Ll
a=—0, . +0a—0a, . +0
= O, —6a, . +0,0,—0,0

34. Let ¢, 9, 93 94 5 o be any quantities which obey the same law of resolution
as has been proved for angular velocities ; we can now find the rates of change of
these quantities, referred to axes moving with the body. Let Q;, Q, ... Qg be the

rates of change of these quantities. Now a,q,4dgQ+sqs+ 04qs+ a5q5+ g5 is the
component of the ¢’s in a fixed direction. Hence we must have

; .
%(QIQI+C&292+ oo o) = QR t - Qg

Differentiate out the left side, and substitute for C.Ll, &2, dg, e 6;6, in terms of the
angular velocities of the moving axes about fixed axes instantaneously coinciding with
them, i.e., in terms of the &’s. Then

00_1Q1+0‘2Q2+ v FagQ
=a1(Q1A—0GQ2+BEQB_ 225+ 0296)
+ similar terms in a,, a5 . . . g,

and there are similar equations with b, ¢, . . . substituted for a. If we multiply these

equations by @, b, ¢;,.. ., and add, we find an expression for Q,. In this way we
arrive at the equations

Q1=€:Zl o =0 tbigs . —0sq5+0,96
Q=q+0q . —0g5+09, . —bigs
Q3=€.Zs"9591+94% « —0,94+019;
Q4=é4 o =09 +0ygs . —0sg5+0;9s
Q5=€%5+9391 . =095 t+0q, . —0ugs
Q=¢—0n+0619s - —0;9.+0.g;

Theory of screws.

35. It has been shown that any state of motion of a rigid body may be reduced to
a translation along a line and ‘a simultaneous rotation about it. Such a motion is
MDCCCLXXXIV, 2 R
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called a twist about a certain screw whose axis is the given line. The same motion
may be effected by a twist on a screw whose axis is the polar line. Let the angular
velocities about the edges of the fixed quadrantal tetrahedron due to any such twist
be Qa, Ob, Qc, Of, Og, Qh, respectively, where

a®+b?4- 42+ h?=1.

Then a, b, ¢, f, g, h, may be defined to be the coordinates of the screw, and Q the
magnitude of the twist about it. The quantity 2{af+bg+ch} may be called the
parameter of the screw, and will be denoted by k. If k=0, the coordinates are the
coordinates of a line, and the motion degenerates into a rotation about the line
represented by the coordinates.

The locus of lines which have no lengthwise velocity due to a twist about the
screw, is the linear complex

af+bg+ch+fa+gb+he=0.

This we shall call (after LinpEMANN) the Rotation Complex. If Qa, Qb ... had
been translations instead of rotations, the same property would have been enjoyed by
the polar complex

aa~+bb4ce+1Lf+gg+hh=0.

This is called the Translation Complex. Any property of one complex has a
corresponding property of the other.

The trajectory of every point on a line of the rotation complex is perpendicular to
the line. Hence the trajectory of any point whatever is normal to the plane which
corresponds to the point in the complex.

It we refer back to the expressions for a, ?), c, f, é, %, we see that

and also

#+b§+cﬁ+fd+gl§+hé=0}
at +bb+ co+ff4gg+hh=0

Hence, if any line belongs to either complex, it will belong to it after receiving a
small twist about the corresponding screw. Hence, by superimposing such small
twists, it follows that both complexes are transformed into themselves by a twist about
the corresponding screw.

36. The screw may be replaced by two rotations, or two translations, in an infinite
number of ways; any line may be taken as one axis of rotation or translation, the
other axis being the conjugate polar of the first with respect to the Rotation Complex.

For let the twist about the given screw be equivalent to rotations A, u, about axes
ay, by, €1, 15 915 By and ag, by, ¢4, fo, 94, g, Tespectively.
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Then
Qa=N\a,+pa, Of =N /s
Qb=M\b, +ub, Qg=Ag, +pg,
Qc=>\¢; +pc, Qb=Mh,+puh,

Squaring and adding we get

Q% =N4-pP42\u cos 0 cos 3 ;
also
Q%k=Mp sin 0 sin 3

where 8 is the length of a common perpendicular to the two lines and 6 the angle
between them. Further, from the form of the above equations, it follows that if any
line of the rotation complex meet one axis of rotation, it will meet the other. Hence
the two axes of rotation are conjugate polars with respect to the rotation complex.
The axes of the screw are obtained by making the second line the polar of the first.

This gives

Qa=Aa,+uf)

&e

Qf =M, +pa, }

and therefore

N4 pd=0?
A =0%

The axes of the screw are conjugate polars with respect to both complexes; i.e.,
they are the directrices of the congruance formed by lines common to the two
complexes.

87. We shall now find the surface corresponding to the Cylindroid.

Let one twist be defined by the components Qa, Qf, the others being zero; and a
second twist by the components Q'b’, Q'g’, the rest being zero. Let the resultant
motion be a rotation \ about a line a, b, ¢, f, g, h, and a translation u along it ; we have
to find the surface generated by this line. As before

Qa=M\o+puf Q' =No+pg
Qf =\ +pa QO'g'=\g+pb
and
¢c=0, h=0.

Hence the new axis always meets the lines (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1), z.e.,
the new axis always meets the common perpendiculars to the axes of the given screws.
From these equations we easily deduce '
2 R 2
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Maf —fa)=p(aa —fT)

Mbg'—gb)=p(bb'—gg))
Hence eliminating A : p

(b'f—ag’)(ab—/y)=(ab’—1fg')(bf —ag).

This equation must be expressed in point coordinates. Since ¢=0 and A=0,

@ ?/

—=>=m say,

€X :1/ *
and

PE 4 ns

F_Y 0 sa

2 U y

Substituting for «’, y’, 2/, ' in the expressions for a, b, £, g, the factor (m—mn)?® divides
out and the equation to the Cylindroid becomes finally

(b'f—ag )y (*+u*) = (ab' —fg")zu(x*+ ).

This is a surface of the fourth order having the common perpendiculars of the axes
of the two given screws, for nodal lines.

38. To find the conditions that any number of twists about given screws may
produce rest.

The method here employed is the sume as that given by SPOTTISWOODE, in the
¢ Comptes Rendus,’ t. 1xvi. ~
- Let the coordinates of the screws be ag, by ... a;, b, .. ., there being n screws ; and
let the magnitudes of the twists on them be Q) Q, ... Q,_;. Then the conditions
that they will neutralise each other will be v

3(0Qa)=0, 3(Qb)=0. . . S(Qh)=0.
The expression

aof) +bogy +-cohy +-fiay +gobi+hge

is called the simultaneous invariant of the two screws 0 and 1, and it will be denoted
by (01). Similar expressions will apply to the other screws. The quantity (00) will
be the parameter of the screw (0).

By means of the equations of condition we get

3(0a)3(0f)+2(Qb)s(0g)+3(Qc)3(Qh)=0.

Multiply these out, then
320,04, )+ $202(1,2)=0.

Here 3 implies summation from 0 to n— 1 inclusive.
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Now let 3’ imply summation from 1 to n—1 inclusive. Then writing the equations
of condition in the form
zl(ﬂa:)= _Qoauo, &C.,
we can show, as before, that '
3(Qa)3 (Qf )+ ... + ... =30200),
e., ,
230i0,(1,7) +4% 02 (6,0) =$Q,%(00).

Subtract this from the former equation, then
570,04(0,1) +04%0,0)=0.
In this way we deduce the following equations

0(0,0)402,(0,1)+04(0,2)+ . . . =0
0,(1,0)4+0,(1,1)+04(1,2)4 . . . =0
90(2?0)+91(2,1)+92(2,2)+ —

The condition that these should be simultaneously satisfied is that the determinant

should vanish ; that is,
(0,0) (0,1) (0,2) ... [|=0.

(1,0) (1,1) (L2)
(2,00 (21) (2,2)

39. Since (0,1)=(1,0), &ec., this determinant is symmetrical. Let [0,0], [0,1], . . .
denote the coefficients of (0,0), (0,1), . . . in the expansion of the determinant. Then

[0,1]=[1,0].
Then we can solve any (n—1) of the equations to find the ratios Q,: Q,: Q,. ..
Suppressing the first equation we get

Q, :[0,0]=(—1)""1Q, : [0,1]
Similarly, by suppressing the second equation, we find that

0, : [1,0]=(=1)"10, : [1,1]

and so on. Hence finally

02 : 0202, ..=[0,0]:[1,1]:[22]...



310 MR. R. 8. HEATH ON THE DYNAMICS OF

The determinant equated to zero gives the relation between the coordinates of the
screws, and these final equations determine the ratios of the twists on them in order
that they may produce rest.

In the case of simple rotations or translations the coordinates become the coordinates

of lines, and therefore,
(0,0)=0 (L,1)=o0...

(0,1) will be the moment of the lines of action of the translations or rotations, and
the conditions that the system may produce rest are of the same form as before.

Kinetics.

40. The definitions of acceleration, momentum, and kinetic energy of a particle are
taken to be exactly the same as in ordinary space, and do not need further comment.

We shall next consider the measure of force. To determine a force completely we
require a line of action and a measure of its magnitude. We assume that a force may
be applied at any point of its line of action. As in ordinary space we shall take
NEwTON’s second law of motion as the basis of the measurement of forces. This law
states that “ change of motion is proportional to the impressed force, and takes place
in the direction in which the force acts.” Hence, if a force act on a particle of known
mass it will cause a change of momentum in the direction of its action, and the
measure of the force will be proportional to the change of momentum per unit of time.
By the proper choice of the unit of force we may deduce the equation

P=mf

which gives the dynamical measure of any force.

Since a linear acceleration f along any line is exactly the same thing as an angular
acceleration f about the polar line, it follows that a force P along any line is the same
thing as a couple P about the polar line.

41, NewroN’s law further implies the physical independence of forces; t.e., if a
number of forces act on a body each produces the same effect as if it alone acted on
the body. Hence if a number of forces act on any number of particles each force
produces its own effect, and to calculate the resultant of the forces we must calculate
the resultant change of momentum per unit time; in other words, the laws by which
forces are combined are the same as those for velocities and accelerations. If, there-
fore, a force P act along a given line whose coordinates are a, b, ¢, f, ¢, h its effect is
the same as if forces Pa, Pb, . . . acted along the edges of the tetrahedron of reference;
and the component force along any other line o', V', ¢, f', ¢, " is

Pad/+bb' ' +ff +gg +hk)
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and the couple about it is

P(af’+ by +cl' +fo' +gb’ k).

42. All the theorems about compounding linear and rotational velocities apply to
systems of forces and couples. Thus any system of forces may be reduced to two,
acting along lines which are conjugate to each other with respect to a certain linear
complex. Any system of forces may be reduced to a wrench about a certain screw.

We can now give an interpretation to the simultaneous invariant of two screws.
For suppose Q is a twist about a screw a, b, ¢, ..., and Q a wrench about another
screw a’, b, ¢, ... Then Qa, Qb, . .. are angular velocities about the six edges of
the tetrahedron of reference, and Qa’, Qb’, . . . are couples about them. Hence if the
body receive a small displacement about the first screw, while the wrench Q about the
other screw is acting on the body, the rate of doing work will be

0Q(af’+bg’4ch’+fa’+gh’+he’)

and therefore the simultaneous invariant of two screws is the rate of doing work,
when the body has a unit twist about one screw, while a unit wrench on the other
screw is acting on the body.

43. The condition of equilibrium of any number of wrenches on given screws is the
same as the condition that a number of twists about the screws should neutralise each
other. If the wrenches reduce to couples or forces we have only to make (0,0)=0,
(1,1)=0, ... The conditions, therefore, for the equilibrium of any number of forces
P,, P, . . . acting along given lines are, first, that the determinant

(0,1) (0,2)
(1,0) . (1,2)
(2,0) (2,1)

should vanish, and further, that the forces should be proportional to the square roots
of the minors of the terms of the leading diagonal of this determinant.
44. Since P=m; if we resolve the force P into the components X, X,, ... X, along

the edges of the fixed quadrantal tetrahedron, and if 1';1, 1')2, e 7}6 be the components of
J along these edges, we have

m=X;  (1=1,2,3,4,5,6).

Applying these equations to all the particles of the body, and using D’ALEMBERT’S
principle, the equations of motion of the body become

smy=3X;  (1=1,2,3,4,5,6).
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Multiply these equations by v;, vy, . . . v5 and add ; then
Son(vyo, vt . L )=3(X w4 . ),

and therefore integrating,
%Emvzzﬁj'(lel—}- .. L)de,

which is the equation of conservation of energy.
45. We must now express the velocities of all the particles of the body in terms
of the given angular velocities w;, wy, ws, 0, ©y, wg

Let a, b, ¢, f, g, b be the line through (x, v, 2, u) along which this point begins to
move. The line will therefore join the two points (x, y, 2, ) and (x+a8t, y-+ys,
z+é8t, u+d8t). Hence

a:b:c:f:g:h
=y(z+28) —2(y+ySt) - . . .

=Yz—2Y 1 AX—XE XY =YL D XU— UL D YU—UY © 2U—UZ

But

yé—zg}:zuwz—yuw3+(y2+z2)w4,—ocyco5—zww6

and we have similar expressions for the other terms. Hence

wf=(2*+v?)o, +xyo, +2x0; . — 22U +yuwg
pY=2ayw, + (1P u?) oyt Y204 +zuw, . —TUwg
ph=1zx0, +yza, 4 (P v og—yue, +2uo,

pa= . +2uw, — U, + (P42 0, — my o — 22w,
pb=—2u0, . +ruw, — Yo, + @+ ) w;— 120,
PC=YUw, — U, . — %W, —Yzwy + (2?4,

where p is some common factor yet to be determined.

46. Square and add these expressions. The left, side reduces to p*; on the right, the
coefficients may be simplified by virtue of the relation, &*+1?+42*+u*=1. Thus the
coefficient of o,? is

964 _|_ 22y _|_ ud + wzyz + 220? + 22u? + yzuz
= (22 +12) (P2 u?)

=

Again, the coefficent of 20,0, is
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ay (2 u?) oy (y*+ ) Fayd—ayu?
—ay(a kgt

=ay.
All the other terms may be simplified in the same way, and therefore finally

W o) o) o)
0l +7) Fol(@+27) +oi(@+y)
+ 20y (63005 — w5005) + 22{ w50, — wg0,) + 2y (w0 —w,0;)

+ 20 (@305 — wg05) + 2y u(0 05— 030,) + 22U (0g0,— 0, 05)

Next multiply the equations by o), w,, ... w;and add; the same expression as before
appears on the right, and therefore

pioyftogtod+ogtob+ocl=p?,
that is
p=0, [+ 0,90+ wh+ o0+ ob+ wc.

Hence p is the velocity of the point under consideration, and the above expressions
for pa, ub, . .. are the velocities of the point (w, ¥, 2, u) resolved along the six edges
of the tetrahedron.

47. Multiplying them by m the mass of the particle, and taking the sum for all the
particles of the body, we find expressions for the linear momenta of the body resolved
along the six edges of the tetrahedron. For brevity, let A=3m(x*+4u?), &c., and let
P\ =3myz, Py=3mzx, &c. Then if (q),4 4456 denote the angular momenta about the
edges 23, 31, 12, 14, 24, 34, or the linear momenta along the edges 14, 24, 34, 23, 31,
12 respectively,

@= Ao, +Pw,+Piw; . =P 4Py
9= Pyo,+Boy +Po;+Po, - Py
%= Pyo,+P o+ Coy —Pyo,+Po;

%= . +Pw—Post+Fo, —Pyjo,—Pyo;
¢s=—Pgo, . +Pw;—P,0,4+Gw; —P o,
%= Pio,+Pw, . —Piw,~Po;+Ha

Also taking $3mu? we get the kinetic energy, viz.:

2T=Aw>+Bo,*+Cw’+Fo, 2+ Go2+Haog?
+2P 1(‘”2‘”3_ “’5“’6) + 2P2(“’3w'1 - “’6‘%) + 2P3(“’1“’2— %“’5)

+2P 4(“’3“’5 - “’z‘“ﬁ) + 2P5(w1w6 - “’3“’4) + 2P6(“’2‘%"‘ wl“’s)
MDCCCLXXXIV. 2 8
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48. The last article suggests the idea of moments of inertia. We may define the
sum of the products of the masses of all the particles of a body into the squares of
the sines of the perpendicular distances from a given plane, as the moment of inertia
of the body with regard to the given plane. Similarly the product of inertia with
regard to two planes is the sum of the masses multiplied by the product of the sines
of the perpendicular distances from the planes. The moment of inertia about a line
may be defined in a similar way. The moment of inertia of a body abont any plane
(, m, n, p) is

Sm(le—+my ++nz-+-puy)?
T.6.,

PEma® +mPSmyt +n*Simat 4 p*Smu+ 2lmSmay+- . . .

Thus the equation
PEma®+ . .. +2mnSyz+ ... =0

is the tangential equation of a surface of the second order, which has the property
that the moment of inertia about any tangent plane is zero. Professor CLIFFORD calls
this the null surface of the body. The property just mentioned is independent of the
system of coordinates chosen.

49. By an orthogonal transformation of such an equation of the second degree
we can rid the equation of the products m, n, ..., and at the same time keep
P+4m?+n24p® unchanged. The surface now becomes

P ma® +mPSmy® 4+ n*Sma* 4 pSmu’=0.

The planes of the particular quadrantal tetrahedron chosen may be called the four
principal planes of the body, and the edges the six principal axes of the body.

The envelope of planes which give a constant moment of inertia, MK?, is given by
the equation,

PSma® +m?SmyP 4 n?Sme? + p*Smut= MK (P +m?+n*+p?).
This is a surface of the second order. Now
P+mP4n024p*=0

is the tangential equation to the Absolute quadric. Hence, this surface has the same
common tangeut planes with the Absolute as the null-surface has. In other words,
this surface and the null-surface stand in the same relation to each other as confocal
quadrics in ordinary geometry. Hence the planes which give a constant moment of
inertia envelope a quadric confocal with the null-surface. '

50. We next consider the moment of inertia about a line.

Let a, b, ¢, f, g, b, be the coordinates of any line, then it was shown in § 17, that
if @ be the sine of the perpendicular distance from any point (z, ¥, 2, u) to the line,
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wr=a*(@*+u®) + 0¥ (4 u?) + A (2 +u?)
PP D)+ )+ )
+2yz (be—gh) + 2z (ca—hf )+ 2xy(ab— fy)
4 2xu(cg —bh) 4 2yu(ah—cf )+ 2zu( fb—ag).

Making use of the previous notation the expression for the moment of inertia
becomes

M= Ad®+ B>+ Cc®+-Ef*+ Gg*+Hhr?
+2P,(bc—gh)+ 2P, (ca—hf)+2P4(ab— f7)
+2P,(cg—bh)+2P;(ah—cf ) +2Py( fb—ag).

If we refer this to the principal tetrahedron of inertia, all the P’s vanish, and it
reduces to

M= Aa*+ B0+ Cc?+Ef*+Gg*+ Hhr2.

It must be noticed that the quantities A, B, C, F, G, H are not independent;
for since ’

m2_|_.,I/2_|_z2_|_u/2=1,

we have

A4+F=B4+G=C+H=M,

where M is the mass of the body.

- 51. We are now in a position to write down the most general equations of motion
of a rigid body, under the action of any forces, referred to a quadrantal tetrahedron
moving in space, in any manner. For in § 34 we obtained formulee for the rates of
change of any quantities, obeying the usual law of resolution and composition, rela-
tively to axes moving in any manner. Applying these formule we can obtain the rate
of change of momentum relative to any moving axes. Equating the rate of change of
momentum to the impressed forces, we get the equations of motion. Let ¢, ¢y, . . . ¢q
denote the six components of angular momentum about the six edges of the tetra-
hedron, and let Q;, Q,, . . . Q; denote the total impressed couples about these lines.

The expressions for q;, gy, . . . ¢ have been given in § 47. The equations of motion
are, therefore,

9.1 o F0q 0595 . — 0595+ 0,0,=Q1
9.2+9691 - Qs+0s9. - —0,,=Q,
é3_0591+9492 o =009, . =Qs
0 - —Ot0gs . —0g+0,q,=Q,
Q.5+0191 o =0+ 09, . —0g=Q;
9'6_92914'0192 o —=Oqtbg . =Q

255 2



316 MR. R. 8. HEATH ON THE DYNAMICS OF

We may write the values of the ¢’s in the form

qi= (dT>(z_1 2,38, 4,5,6.)

where T has the value given to it in § 47.

52. If we suppose the tetrahedron fixed in the body, we must put §,=w,, fy=w,...;
and if further, the tetrahedron be the principal tetrahedron of inertia, the equations
will correspond to EULER’s equations. They then become

A(;)l—-(B —H)w,w;—(G—C)
BC:)Q—“(H‘-A)Q)Gwl—(O F )waé—QQ

53. If the body be moving under the action of no forces, there are two invariable
complexes, viz. :

QS+ 9+ 27+ g0+ 90+ qe=0

and its conjugate complex. TFor since the equations of motion express the fact that
the ¢’s do not change, these complexes will be fixed in space. The complex whose
equation has just been given is the locus of lines along which there is no linear
momentum. If no forces act, if we multiply the equations of motion respectively by
wy, 0y, . . . 0y and add, we get by integration

Aw?+ B2+ Col?+Fo, 4+ Go?+Ho=2T

which is the equation of conservation of energy.
If again we multiply the equations of motion by Aw,, Bw,, . .., and add, we arrive
at another integral of the equations,

2(012 + B2w22_|_ O2w32+ F)’&wﬁ_l_ G2w52+ H2w62: K2,

which expresses the fact that the sum of the squares of the ¢’s is constant,
One more integral may easily be found. For let

A=ma®, B=ml? ...
then
S=1—a® @P=1—=0 K=1-—¢
and

G—C=M(1—*—c)=H—B, &.

Hence the first three equations may be written in the forms
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From these we immediately deduce the equation

a*o,? b2w,? Fw,?
1—0—¢ ' 1—c?—a® ' 1—a?—0*

= a constant.

Solution of the equations in terms of the double theta~functions.

54. The equations of motion of a solid body under the action of no forces can be
solved in terms of the theta-functions of two variables, one of the variables being a
linear function of the time. The solution, however, is not complete, owing to a
deficiency in the number of arbitrary constants.

The notation employed will be that given by Mr. ForsyTH in his “ Memoir on the
Double Theta-functions,” published in the Philosophical Transactions for 1882.

The definition of a double theta-function is expressed by the equation

m=w N=0 @m+p) @Cn+v)® @m+p)2n+v)

A,
(I){< P> x, y}z 2 . 2 (__1)772)\+in 4 q ¢ 2 ,vm(2m+p.)w'y(2n+v)
My V M= —00 NI —0

in which \, u, p, v are given integers (afterwards taken to be each either zero or unity)

A . . . . .
and < ’ 1Ij > is called the characteristic; @, y are the variables; p, q, 7, v, w are known

gl

constants, called parameters (in our case arbitrary constants) ; and the double summa-
tion extends to all positive and negative integral values (including zero) of m and n.
There are sixteen different double theta-functions distinguished by suffixes 0,1, 2, ... 15.
These are written 9(x, y), 9,(x, ), . . ., or when the variables are easily understood,
simply 95, 94, .+ .

The characteristics of the sixteen functions are given in the following table :—

0, 0 0,0 0,1\ - | /0,1 0, 0 0, 0 0,1 0,1
0, 0 0, 1 0,1 0, 0 1,0 1,1 1,1 1, 0
"9'0 "92 "910 '98 "91 "93 '911 '99
1,0 1,0 1,1 1,1 1,0 1,0 1,1 1,1
1,0 LO 1,1 1,0 0,0 0,1 0,1 0,0
"95 "97 "915 "913 "94: "96 '914 '912

The functions 3y, 9, %5, Iy, H3, 31, are odd functions, the rest even.
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55. For brevity denote
' Hxe+E& y+n) by 0,
Hx—§& y—n) by &,
K, v) by 9,
3 ) by,

for all the different suffixes. Also let

CO':[S 0(907 ?/):lx=0,y=0’ &e.

for all the even functions.

Mr. ForsyTH finds formulee for the products ® @ for different values of the suffixes.
These are given on p. 834 et seq. of his Memoir. In the 13th set occur the first four
of the following six formulee. The remaining two formulee are not in his list, but are
proved in exactly the same way.

0405 Oy 0'15=0,05 99 S15+0, 0139539 —0,0,,9,91,—0; 01195 915
€y 010 15 ="0005 914910+ 014012909 — 0567 9991, — 0, 01195 3,
CoCy Oy O'15=0,0 7 $10+0; 0129,%y +0;01,90911+ 0, 01195 S1s
C1909 O'19=0,0159 15+ 0, 05 095 — 0,0, 959, —01,0,,911%4
€198y O'195= 0,015 $15+00 014963 14+05011 9591, +0, 07 34 3
cocy 5 01, =040y 5 $13+0; 01,9991, +0;0129¢%9 +06, 01,9 9,

If in each of these formulee we change the sign of &, and then subtract each new
formulee from that from which it is derived, we deduce the following six equations :—-

€405 (8 O 15— 0’y B,) =2(0, 0,399 —0;0,095%1,)
CyCy (01481, 0'1,019) =2(6140109¢%; —0,61,9;9; )
CgCy (O7 ©'13— 0y B19)=2(0; 015953 +0,01195%4)
CoC19(@y O — 8"y Byy) =2(0, 05 I%5 — 030, 9397 )
CaC19(Bp ©'15— 05 B15) =2(0; 0149091, +0,0, 9,9, )
CoCy (B ©'15— 05 B15) =2(0; 0159499 +0,01,979 1)

56. The odd functions 9y, ... will vanish when x=0, y=0. Let ¢; be the coefficient
of  in the expansion of 9, so that

o {d.&s(m, g/)}
5 dx =, =0

and so on for all the odd functions.
Differentiate all the equations of the last set with respect to ¢ and then put §=0.
We notice that
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G Setd) =1 Se+o
and

d a
5 o= 8= —L fa—8).
Hence, taking the first equation,

4 a9
C4Cg {'9 12 Ego —3 “1—2} =01015%5%9—C4C1099% 4

dx
or

D\, IS dy S,

4% G \ 9,,) = 9198 9, 912“’601 3y 9o

Performing the same operations on all the equations we arrive at the following six
relations :—

[\ _ F Y %S

% <912>‘"“1 18 9 By 09,9,

d 914> I, I, I 9,

CCy o7 )=C14Crp o~ —==—CoCpy = =

02 da <'912 1R PR i e

d 97) ) Y5 Sy

Coly — | or |=Cq Clg == —ECoCyy = o

0 da <'912 TR he '912+ o he S

d ,99> 3, I Y5 Y,

CyCro 7| o )=Cy Cx = ——Coly = T
P Gy <‘912 0 g S > da g
d () _ %o Sy 91 Y,
2 <9m>"°’° 15, 9T 5.9,
AN S Y
€% 4, < 312>—05 C1e 910905 +cooyy 310 915

57. If we take the mass of the body to be unity, and notice that
A4+F=B4+G=C+H=1,
the equations of motion of the body under no forces may be written

A .
1—B—C 0+ 00— wg0;=0

B .
1ZC—A Wyt w30,—w,0,=0

¢ .
1-A_B 03+ 0,0; — 0,0, =0

1—-A -

BC 0+ 00— w0 =0
1-B -

C—A 054 w,0;—0,0,=0
1-C

o+ 0,0;—0;0,=0.
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(@ y) S, 1)
=5, =f %
=Y 9@, y) U= 94@, 9)
— ;93@@ _ 95(”: )
=0 9@, 9) =9 3@ )
. Y@y g @, y)
@30 '912(9”’ Y) we—h

So(@, 9)

where in all these formulee x=nt+a and y is arbitrary. The coefficients-a, b, ¢, /; g,
h, and n, e are arbitrary constants. If we substitute these values of w;, w,,
the equations of motion they give the equations

wg 1N

« o .

Now these relations are of the same form as the relations between the %’s, which
have been proved above. We have only to choose the arbitrary constants so as to
make these equations exactly the same as the relations between the s, and then we
have got a solution of the equations of motion. 4

58. Compare first the terms involving products ; in this way we find the relations

c__ b))
G0 = “Cs ;
@ °
0709 }——OOCI‘L h ~
o
0005 ‘;—-— 6207 }J
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Also
b ¢ _ M
CoC11 ; 7 "%
a C
Coln1 J7 R %%
ab
CyC11 ;a‘ ;— C14C19
7/

If we eliminate a, b, ¢, f, g, h from the first three equations, by multiplication,

the result takes the form
CaC10C5Cy+ €1615C5014=0.

This equation among the constants does not hold in general ; so we must suppose
the parameters p, g, », v, w of the theta-functions so connected as to make it satisfied.

Again, multiplying the last three equations by ;’ S: ;L, respectively, and comparing

them, we see that

Of these, the first equation is the same as the third of the first set.

The second may be written

gj‘CiC COC
959— gt

Comparing this with the first of the other set we get
€6C10C5C9+C1C15C2C14=0

which is the same as before. Hence the six equations are consistent if this one
relation holds.

They give us
a\?_ C%C56y4 b ¢
S o éécﬁ%g gh
— sty Gl
Cot’ty  Cofyy
That is
’ < ﬁ>2=0001205014
S CalyCylr1
Similarly
<é>2 0199014
9 CoCeCsl11
< E>2_ 501%C1
h €oCeC11C14
MDCCCLXXXIV. 2T
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59. Again, comparing the other terms of the equations with the relations between
the @’s, we deduce six more relations

g ooy nA
o ces 1—B—=C
ah cty  nB
b ety 1—C—A
of ety nC

¢ €ye1o 1 —A—B
gh__ ey n(1—A4)
S e, C—B
B eey m(1—B)
g ey A—C
Jy_  amnd-C)
h 0, B—A

From the last three equations
im0, A=BX1=0)
T« (B-AA-O)
o ,(1=0)(1-4)
P == e HB=4)
__a’ o(1—A)(1-B)
W= =™ (A= 0)O—By

These are all positive if A, C, B are in descending order of rﬁagnitude.

;;6, g, % and therefore we know a, b, ¢, f, g, b com-
pletely in terms of A, B, C, and the ¢’s. If we substitute these values in the first
three equations of the last set, we are left with three relations among the constants.
Now the @’s implicitly involve the eight constants, p, g, , v, w, n, a, and the other
variable y, which is perfectly arbitrary. Among these quantities we have seen that
there are four relations imposed by the form of the equations of motion. Hence
there are four arbitrary constants left to express the initial conditions. But to do
this completely, we should require six constants. Thus the solution is not complete.

60. The relation

We have already found the ratios

CgC10C5C9+€1015C2C14 =0

may be simplified by means of general relations between the ¢’s.
By Mr. ForsyTa’s product theorem, we can prove that

— 0001996910+ 05015959 +0,059:91,—0,0,,9,915=0

— 000199599 + 0501594910+ 040591915 — 0,0119991,=0
0001039914+ 0501591 %15— 0,059¢%15— 0,601,959y =0
000199 1915+ 050159991, — 04059539 — 0;6199,,=0.
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The last two equations are given by Mr. ForsyTH in equations (212), (219) of his
Memoir. Differentiate these equations with regard to @ and then put =0, y=0,
£€=0, n=0; they give us

—CyC1g + CoCro=CsCrs + CsCy ~CyCg + CoC1s=0
—CC1g + C5Cp FC3C15 + CeC19TCyCs + €1€13==0
Colrg + Col1atCsC15 + C1C13—Cylg + CiC19=0

Hence
€4C5(CoC14—C1C13) = (00012+c3015)(06010_ €5Cy )
0408(06010 —CyCy )= (00012"' €315)(CaC14—€1C13)
Hence
¢ cg® =cy%0)st—c5%)°
or

% 2 90 2 2, 2
Cy°C19°=0,"Cg° +C57Cy5
But we have also

C405(Co0r4F01013) = (10— 5015)(CaCr0H05C0)
Multiplying this by the first of the other two equations we get

20 2 1% 9% 22,2
Co7C1y” — C1"C13"=0Cg"C19" —Cy"Cg"
If therefore
, % 90 2n I Qn D4 2,2
C97C147C17C13"=0C4"C10 C5"Cy
we have also
2, 2 % 8 %n 1 22
3714 C1°C13°=C4°C1"+C57Cy
whence
% 99, 2
CgC1p =0y Cr4
2,2 .2, 2
C5"Cy" =C1"Cq3
€.,
CCr0=F0CsC14

CsCy = F¢1Cy5

AppiTIoN,
(Added March 4, 1884.)

The relation between the constants may be put into another form. We have

CoC3 10150 5— ®1z®’15 =2 { 08011'9 ™t 0506 '99910}
CoC15103 09— 0,03 } =2 {04011’97’98 —0,0,499915}
2T 2
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Hence, performing the same operations as before

d 915}_ Iy o
0% 1. { 9 CgCyy 31 9 + 912 94

491 _ Y7 s Yo S13
cocl5dv’0 { dlz} —04011'912 '912—01614'912 '912.
. LA
Whence the coefficient of « in — (=%
— %% *+€5¢6C5C10

2
CoC3C19

and the coefficient of « in —d—( §3>
\ 13

"4011"708 6048018

Corstre”
Hence
C5CoCaC101 C1014CoC13
ary d /9
= ¢0p? X coefficient of xin {C%l <915>___ 015%< 53_ )}
12.
. ) 9. —
=2¢,¢,4> X coefficient of 2? in {01-157——01593}
12
Now

m\? d
'915=015"%x2<ﬁ> 51}0154‘ cee

'm\? d
.93 =Cg —%902<K> &}?03 4+ ...

w\? d
S19=01—5 <K> —Cit -

in Mr. ForsyTa’s notation ; therefore

\? de de
03'9]5—01533=%5”2<E> { 15d103 3021;5}

and finally
m\? de de
060100509+0101302014=00012<ﬁ> {015 dps C3 dplﬁ}

- Hence, if this vanishes, we have

de, deys
15dp—03d , since p'=log p;

that is, 5—3— is independent of p.
15



